SUPPLEMENTARY MATERIALS for Energy-based Test-time Adaptation

Younjoon Chung* Hyoungseob Park*

Ziyao Zeng Safa Cicek'

Patrick Rim*  Xiaoran Zhang Jihe He
Byung-Woo Hong?

James S. Duncan Alex Wong

Yale University TUCLA *Chung-Ang University

{younjoon.chung, hyoungseob.park, patrick.rim, xiaoran.zhang}@yale.edu

safacicek@ucla.edu,

A. Datasets

KITTI dataset [17] provides calibrated RGB images syn-
chronized with Velodyne lidar point clouds, GPS, and iner-
tial data, collected from over 61 driving scenes. It includes
~80K raw image frames paired with sparse depth maps of
~5% density, commonly used for depth completion [69].
Semi-dense depth data is available for the bottom 30% of
the image space, while ground-truth depth maps combine
11 consecutive raw lidar scans. We trained our model on
~86K single images, without using the test or validation
sets.

VOID dataset [77] consists of 640x480 RGB images syn-
chronized with sparse depth maps captured in indoor set-
tings like classrooms and laboratories, and outdoor gar-
dens. Sparse depth maps (=0.5% density, ~1,500 points)
were created with the XIVO VIO system [14], while dense
ground-truth maps were obtained using active stereo. VOID
introduces challenging 6 DoF motion due to rolling shut-
ter effects in 56 sequences, contrasting with KITTI’s planar
motion. Our model was trained on ~46K images.

NYUv2 dataset [45] contains 372K synchronized 640x480
RGB images and depth maps captured using Microsoft
Kinect across 464 indoor scenes, including homes, offices,
and stores. To simulate SLAM/VIO-style sparse depth
maps, we employed the Harris corner detector [22] to ex-
tract ~1,500 points from the depth maps. We evaluated
adaptation performance on 654 test images.

ScanNet dataset [10] offers 2.5 million images with dense
depth maps across 1,513 indoor scenes. SLAM/VIO-style
sparse depth maps were simulated by applying the Har-
ris corner detector [22], sampling ~1,500 points from the
dense maps. Our experiments utilized ~21K test images
for adaptation.

Virtual KITTI (VKITTI) dataset [15] includes ~17K
1242 %375 synthetic images across 35 videos, derived from
5 original KITTI videos augmented with 7 variations in
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lighting, weather, and camera perspectives [69]. To min-
imize the large domain gap between RGB images from
VKITTI and KITTI despite Unity’s virtual similarity to
KITTI scenes [15], we used VKITTI’s dense depth maps
only to reduce the domain gap in photometric variations,
while sparse depth maps were simulated to match KITTI’s
lidar-generated distribution in terms of marginal distribu-
tion of sparse points. A test set of ~2,300 images was used
for adaptation.

nuScenes dataset [5] provides 1600900 RGB images syn-
chronized with sparse point clouds, featuring 27.4K train-
ing images from 1,000 driving scenes and 5.8K test images
from 150 scenes. For the test set, ground truth was created
by merging projected sparse depth from forward-backward
frames. Setup details will be provided with released code
for reproducibility.

SceneNet dataset [37] comprises 5 million 320x240 RGB
images with depth maps captured in simulated indoor envi-
ronments with randomized room arrangements. Due to the
lack of sparse depths, sparse depth maps were derived us-
ing the Harris corner detector [22] simulating SLAM/VIO
outputs, followed by k-means clustering to reduce the sam-
pled points to 375 (0.49% total pixel density). We used
~2,300 test images for adaptation from a single split (out of
17 available) of 1,000 sequences of 300 images each. Each
sequence is generated by recording the same scene over a
trajectory.

Waymo Open Dataset [65] includes 1920x 1280 RGB im-
ages and lidar scans collected at 10Hz in autonomous ve-
hicle scenes. It features ~158K training images from 798
scenes, and ~40K validation images from 202 scenes with
sampling frquency of 0.6 seconds. Objects are annotated
across full 360° field. Each top lidar sensor’s point cloud
is projected onto camera frame. Ground truth was gener-
ated by merging top and front lidar scans projected over 10
forward-backward frames, corresponding to 1-second inter-
vals, with moving objects removed using annotations. Out-
liers in depth points were filtered out for accuracy.



B. Implementation and training details

Model Architecture. Energy model is implemented as a
convolutional neural network that takes a two-channel in-
put of sparse depth and the dense prediction. It uses six 5x5
convolutional layers (stride 2) with LeakyReLU activations
to increase channel depth from 2 to 512. A final 3x3 convo-
lutional layer then maps these features to a single-channel
energy map to score input regions.

Hyperparameters. Model and dataset specific hyperpa-
rameters for test-time adaptation are noted in 2.

Training energy models. We take baseline depth comple-
tion models pre-trained on KITTI and VOID from [? 1.
For each model, we train patch-based energy model on the
corresponding source dataset i.e. KITTI, VOID. All models
were trained for 5 epochs with a batch size of 32. Specific
learning rates and hyperparameters for data augmentation
will be released with the code.

Evaluation. For outdoor datasets, test-time adaptation per-
formances are evaluated on bottom-cropped regions to ex-
clude regions where no corresponding sparse depth exists.
For VKITTI, we evaluate on 1240 x 240 bottom-cropped re-
gions, 1600 x 544 for nuScenes, and 1920 x 640 for Waymo.
For indoor datasets, models are evaluated on the entire re-
gion. The error metrics used for evaluation are defined in
1. For outdoor, we evaluate the models on depth range from
0.0 to 80.0 meters. For indoor, we evaluate on 0.2 to 5.0
meters.

C. Extended Related Work

As we utilize adversarial perturbations in our method, we
present a related works on the topic as an extended discus-
sion.

Adversarial Perturbations. Small input perturbations can
significantly alter classification outputs [66]. Goodfellow
et al. [19] introduced Fast Gradient Sign Method (FGSM),
later extended to iterative variants for increased effective-
ness [12, 27, 36]. Minimal perturbations were studied in
[38], and lower bounds on their magnitudes were analyzed
in [49]. Adversarial examples can yield high-confidence
outputs from unrecognizable inputs [46], and are attributed
to non-robust features [26]. Transferability across models
and datasets was explored in [44, 86].

Universal perturbation, which can be applied even with-
out knowledge of the trained model, and generalize across
domains [6], was proposed in [39]. Data-independent and
data-free constructions have been studied in [40, 41], and
generative methods has been explored in [23, 42, 52]. [55]
extends the concept to non-Euclidean domains.

Adversarial defense includes adversarial training [27,
68], universal training [43, 62], gradient discretization
[4, 84], input randomization [47, 54, 83], purification [,
21, 53, 60], and denoising [33]. Other strategies include

normalization [87] and object detection [8].

Adversarial robustness has also been studied in dense
prediction tasks. Prior works addressed detection and seg-
mentation [24, 85], monocular depth [41, 76], and optical
flow [57, 61]. Recent studies examined physical patch at-
tacks [95] and synthetic augmentations [11]. Stereo at-
tacks were considered in [? ], and [3] studies univer-
sal perturbations for stereo depth estimation. We exploit
the adversarial perturbations as a mean of exploring the
data space, where the perturbed samples simulates the
out-of-distribution samples with source data. The out-of-
distribution samples enable the energy model to learn to as-
sign high energy to the predictions on target distribution.

Metric Definition
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Table 1. Error metrics. dgy: means the ground-truth depth.

Dataset LR Wsm Wz Wenergy Inner Iter.
MSG-CHN
‘Waymo 3e-3 3.0 1.0 0.001 3
VKITTI-FOG  5e-4 6.0 1.0 0.5 5
nuScenes 3e-3 5.0 1.0 0.5 3
SceneNet le-3 8.0 1.0 0.1 3
NYUv2 Se-4 7.5 1.0 0.004 3
ScanNet 5e-3 8.0 1.0 0.001 3
NLSPN
Waymo 6e-3 1.0 1.0 0.001 1
VKITTI-FOG  le-3 1.0 1.0 0.001 1
nuScenes 6e-3 1.0 1.0 0.002 1
SceneNet 3e-3 1.5 1.0 2.0 3
NYUv2 4e-3 5.0 1.0 1.0 3
ScanNet le-4 2.0 1.0 0.3 3
CostDCNet

Waymo 5e-3 3.0 1.0 0.1 1
VKITTI-FOG  5e-3 3.0 1.0 0.04 1
nuScenes 5e-3 3.0 1.0 0.003 1
SceneNet 6e-3 2.5 1.0 0.001 3
NYUv2 3e-3 3.5 1.0 0.0001 3
ScanNet 2e-3 2.0 1.0 0.0002 3

Table 2. Hyperparameters. Model specific hyperparameters used
at test-time.

E. Discussion

In the pursuit of building embodied Al agents, we must
equip them with the capability of efficient and robust ego-
centric 3D reconstruction [31, 70, 71, 82, 88] that can gener-
alize to different domains via adaptation. We view energy-
based methods, such as ours, as a tool with unlocked po-
tential to push the frontiers of many critical sub-tasks un-
der this broader vision of domain adaptation, including
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Figure 1. Qualitative results on NYUv2. We adapt CostDCNet from VOID—NYUv2.

monocular depth estimation (MDE) [32, 74, 76, 81]. To
address the inherent scale ambiguity in the task of esti-
mating 3D depth from a single 2D image, one can ex-
plore the multimodal tasks of predicting depth from im-
age, in addition to one or multiple of: radar [58, 63], li-
dar [9, 13, 35, 59, 75, 77-79], language [93], inertial sen-
sors [14], additional cameras [3, 16, 80], and other modal-
ities that encode semantic and/or geometric information
about a three-dimensional scene.

F. Limitations

While this paper proposes an energy-based test-time adap-
tation method for depth completion and demonstrates an
energy model trained on both in-distribution and adversar-
ially perturbed out-of-distribution samples, there are limi-
tations in scope and generality. Our focus is restricted to
depth completion [25, 34, 48, 75, 77-79, 90, 94]; how-
ever, the energy model, the core component of our ap-
proach, can be applied to other geometric tasks such as
optical flow [2, 28-30, 64, 67, 89], monocular depth pre-
diction [14, 18, 50, 51, 56, 73, 74], and multi-view stereo
[7, 20, 72, 91, 92], where adaptation mechanisms using en-
ergy models remain underexplored. We hope our findings
contribute to the adaptation of geometric models in real-
time, resource-constrained settings to unforeseen environ-
mental conditions.
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